Как работает жесткий диск (hdd): устройство и принцип работы жесткого диска в 6 разделах
Содержание:
- Устройство жесткого диска
- Основные характеристики жестких дисков
- Работа жесткого диска
- Плата электроники
- Основные характеристики жестких дисков
- Основные признаки неисправности жесткого диска
- Как и в каком виде хранятся данные на жестком диске компьютера
- Гермоблок
- Объем, скорость и время доступа
- Устройство жесткого диска компьютера
- Вместительность хранилища
Устройство жесткого диска
Винчестер состоит из многих элементов. Так, его физическая структура представлена комплектом пластин, которые еще называют дисками. Их покрывает магнитный слой — плоттер. Вращающийся вал — шпиндель — служит соединительной деталью. Есть еще намагниченные головки. Каждая из них движется по одной из пластин, таким образом считывая и записывая информацию.
Примечание: диски обладают толщиной примерно в пару миллиметров. Их чаще всего делают из металла, но встречаются и керамические, стеклянные варианты.
Обе поверхности пластин задействованы во время записи файлов. Шпиндель крутится на одной и той же скорости. К примеру, у терабайтного WD 3.5″ SATA 3.0 он за минуту поворачивается 7200 раз.
Данные пишутся по трекам — концентрическим дорожкам. Они поделены на сектора, которые содержат конкретный информационный объем.
Инфообмен между оперативной памятью системы и накопителем происходит поэтапно и выражен кластером. Он представляет собой целое число, состоит из цепочки расположенных последовательно секторов: 1, 2, 3, 4 и т. д.
Дорожки «харда», размещенные на разных частях устройства, но которые имеют один и тот же номер, называют цилиндром.
Примечание: жесткие носители бывают двух типов — внутренние и внешние. Их механическая часть практически идентична. Отличия — лишь в интерфейсе подключения и корпусе. Внутренние аппараты подключаются по SATA, а портативные — по USB. Переносные модели заключены в корпуса, которые защищают их от внешнего воздействия.
История: Кто и как изобрел первый жесткий диск: 4 эпохи истории HDD
Основные характеристики жестких дисков
Форм-фактор — определяет ширину жесткого диска в дюймах. Накопители имеют стандартизированные размеры 0.85, 1, 1.3, 1.8, 2.5, 3.5 дюймов. Стандартным для настольных компьютеров является 3.5 дюйма и 2.5 для ноутбуков.
Интерфейс — обеспечивает взаимодействие жесткого диска с материнской платой компьютера. В дисках предназначенных для установки внутри персональных компьютеров используется интерфейс SATA разных версий. Основное различие в скорости передачи данных: Revision 1.0 до 1,5 Гбит/с, Revision 2.0 до 3 Гбит/с (SATA/300), Revision 3.0 до 6 Гбит/с (SATA/600). Винчестеры с интерфейсом PATA (IDE) почти вышли из употребления и используются только со старым оборудованием.
Емкость — максимальное количество информации, которое может хранить жесткий диск, измеряется в гигабайтах. Поскольку производители приравнивают один килобайт к тысяче байт (на самом деле 1 Кбайт = 1 024 байт), то жесткий диск маркированный как 500 ГБ имеет реальную емкость 465.7 ГБ.
Скорость вращения шпинделя — количество оборот шпинделя в минуту. Имеет стандартные скорости, в настольных компьютерах обычно 5400 или 7200 об/мин, а в ноутбуках 4500 или 5400 об/мин. В жестких дисках для серверов скорость вращения обычно составляет 10000 или 15000 об/мин. Чем больше скорость вращения, тем меньше время доступа к информации.
Объем буфера — специальная высокопроизводительная память, встроенная в жесткий диск служащая для ускорения работы накопителя и сглаживания разницы в скоростях чтения/записи и передачи.
Время произвольного доступа — определяет усредненное количество времени, требуемое головке для позиционирования на произвольном участке пластины. Непостоянная величина, зависящая от начального и конечного положения головки и места позиционирования. Чем меньше данный показатель, тем быстрее диск способен отдавать запрошенную информацию.
Время наработки на отказ — среднее время безотказной работы, рассчитанное производителем. Является аналогом параметра надежность и соответственно, чем оно больше, тем лучше.
Ударостойкость — способность винчестера безболезненно переносить удары и резкую смену давления. Измеряется в единицах допустимой перегрузки, раздельно для включенного и выключенного состояния. Чем больше ударостойкость, тем лучше. Более актуально для ноутбуков и переносных винчестеров.
Уровень шума — шум, производимый жестким диском во время работы, измеряется в децибелах. Включает в себя шум вращающихся пластин, аэродинамический и шум перемещающихся головок.
В одном компьютере может быть установлено несколько винчестеров. Общее количество ограничено наличием места в компьютерном корпусе и количеством коннекторов для подключения на материнской плате. Так же существует возможность объединения нескольких накопителей в единый дисковый массив для повышения скорости работы и надежности хранения информации.
Мы рассмотрели основные моменты устройства и работы жесткого диска в компьютере
Теперь даже если вы чайник, вы знаете, на что обращать внимание при покупке нового накопителя на жестких магнитных дисках
Работа жесткого диска
Теперь — собственно о процессе работы винчестера. После начальной настройки электроники и механики микрокомпьютер винчестера переходит в режим ожидания команд от контроллера, расположенного на системной плате или интерфейсной карте. Получив команду, он включает нужную головку, по сервоимпульсам отыскивает нужную дорожку, дожидается, пока до головки “доедет” нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких — винчестер может работать в так называемом блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись с передачей информации к контроллеру или от него.
Для оптимального использования поверхности дисков применяется так называемая зоновая запись (Zoned Bit Recording — ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно — и информационную емкость), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому, файлы, расположенные ближе к “началу” винчестера, в целом будут обрабатываться быстрее файлов, расположенных ближе к его “концу”.
Теперь о том, откуда берутся неправдоподобно большие количества головок, указанные в параметрах винчестеров. Когда-то эти числа — число цилиндров, головок и секторов на дорожке — действительно обозначали реальные физические параметры (геометрию) винчестера. Однако при использовании ZBR количество секторов меняется от дорожки к дорожке, и для каждого винчестера эти числа различны, поэтому стала использоваться так называемая логическая геометрия, когда винчестер сообщает контроллеру некие условные параметры, а при получении команд сам преобразует логические адреса в физические. При этом в винчестере с логической геометрией, например, в 520 цилиндров, 128 головок и 63 сектора (общий объем — 2 Гб) находится, скорее всего, два диска и четыре головки чтения/записи.
В винчестерах последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood — максимальное правдоподобие при неполном отклике) и S.M.A.R.T. (Self Monitoring Analysis and Report Technology — технология самостоятельного следящего анализа и отчетности). Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска: уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов и на основании максимальной похожести делается заключение о приеме того или иного кодового слова — примерно так же мы читаем слова, в которых пропущены или искажены буквы.
Винчестер, в котором реализована технология S.M.A.R.T., ведет статистику своих рабочих параметров (количество старт/стопов и наработанных часов, время разгона шпинделя, обнаруженные/исправленные ошибки и т. п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или в служебных зонах диска. Эта информация накапливается в течение всей жизни винчестера и может быть в любой момент затребована программами анализа; по ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.
Плата электроники
Cостоит из следующих основных компонентов: центральный процессор, модуль оперативной памяти (ОЗУ), микросхема ПЗУ (на современных накопителях ПЗУ интегрирована в процессор, т.н. масочное ПЗУ), микросхема управления шпиндельным двигателем и БМГ, разъем питания и разъем интерфейса.
Устройство платы электроники жесткого диска
Отдельно стоит остановиться на микропрограмме накопителя. В случаях, когда требуется ремонт жесткого диска, правка микрокода является одной из самых распространенных операций. Служебная информация как правило, состоит из двух частей: это первоначальный загрузчик и собственно основная программа (оверлеи, транслятор с дефект-листами, модули SMART, модули заводской калибровки и самотестирования, логи и проч.). Загрузчик расположен, в основном, на плате электроники в виде процессора+ПЗУ. Произведя старт платы и раскрутив двигатель до нужных оборотов, микропрограмма позиционирует головки по серворазметке и пытается прочитать служебную информацию. Если все произошло без сбоев, диск рекалибруется и выходит в готовность по интерфейсу.
Разумеется, данная статья носит весьма обзорный характер и не может охватить всех нюансов и тонкостей строения современного жесткого диска, который несомненно, является весьма сложным устройством, по сути напоминающим компьютер в миниатюре.
В разделе статей регулярно выкладываются материалы о текущих задачах по восстановлению информации, где рассматриваются многие аспекты внутреннего строения винчестеров конкретных моделей.
Основные характеристики жестких дисков
Современные HDD производятся в 2 форм-факторах: 2,5” и 3,5”. Первый отличается компактностью, быстрым действием, экономным потреблением энергии. Второй вмещает больший объем информации.
Кроме форм-фактора, к определяющим характеристикам жесткого носителя информации относят:
- Объем диска. Средним значением сегодня является 3-6 терабайт, но существуют носители емкостью 10 терабайт и более.
- Скорость вращения шпинделя, определяющую оперативность записи и чтения.
- Максимальную скорость передачи данных.
- Назначение. К примеру, для круглосуточной работы в составе видеосистемы или для выполнения стандартных функций записи и чтения.
- Поддержку NCQ, способную ускорить работу с носителем посредством оптимизации очереди команд.
- Объем кэш-памяти, необходимой для буферизации данных.
- Разновидность разъема.
Важным параметром является уровень шума во время работы, так как некоторые устройства способны создавать значительные шумовые помехи.
Примечание
Из не относящихся к технической стороне вопроса характеристик выделяют ударостойкость. Ее значение для обычных моделей составляет 40G. При серьезных нагрузках отдают предпочтение дискам с большей прочностью на удар.
Основные признаки неисправности жесткого диска
Неисправности винчестера можно разделить на две группы:
- механические (физический износ, нечитаемые секторы, отказ блока магнитных головок, заклинивание шпинделя, выход из строя управляющего блока);
- логические (сбои операционной системы, повреждение каталога файлов вследствие вирусного заражения, случайное форматирование).
Заметить начинающиеся проблемы с жестким диском чаще всего можно раньше, чем оборудование окончательно выйдет из строя. Признаками механических неисправностей являются:
- посторонний шум во время работы (шорох, постукивания);
- замедление работы с файлами;
- пропажа документов или отсутствие доступа к ним;
- сбои в работе операционной системы во время чтения или записи файлов;
- самопроизвольная перезагрузка компьютера;
- появляющиеся сообщения;
- появление «синего экрана смерти»;
- диск не виден в БИОС или не считываются определенные сектора;
- невозможно загрузить операционную систему.
При неисправности контроллера диск не вибрирует и не издает никаких звуков при запуске системы. Информация, хранящаяся на винчестере, при этом сохраняется, но доступ к ней отсутствует. Постукивание при работе указывает на повреждение магнитных головок, а резкий свист — на неисправность шпинделя. Сбои в работе Windows, сообщения о системных ошибках, замедление чтения и записи файлов говорят о наличии сбойных секторов.
Признаки логических нарушений похожи на те, которые возникают при механических неисправностях. Но диск при этом виден в БИОС, а при работе не слышно постороннего шума.
Как и в каком виде хранятся данные на жестком диске компьютера
Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.
Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.
Сама поверхность диска — гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности — такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.
Гермоблок
Cлужит для защиты и крепления пакета магнитных дисков — носителей информации и блока магниторезистивных головок (БМГ), принцип действия которых заключается в использовании материалов, изменяющих свое электрическое сопротивление при изменении напряженности окружающего магнитного поля. Магнитные диски покрыты магниточувствительным слоем, который и является носителем информации. На нем информация представляет собой магнитные поля, создаваемые мельчайшими участками напыленного слоя. Считывающая головка, попадая в поле, создаваемое участком магнитного покрытия, формирует электрический сигнал, так как является проводником, находящимся в магнитном поле. Этот сигнал соответствующим образом обрабатывается и передается далее по интерфейсу.
Устройство гермоблока жесткого диска
На некоторых жестких дисках присутствуют окошки для штанги серворайтера (устройства для записи серворазметки на пластины накопителя), закрытые прочным фольгированным материалом. Заполнен гермоблок обеспыленным воздухом, который сообщается с окружающей средой через специальные компенсационные отверстия, закрытые фильтрами, для уравнивания давления внутри гермозоны.
Как показано на рисунке, головки крепятся на металлическом коромысле, подвижном относительно магнитных дисков. Во время работы двигателя вращающиеся магнитные диски создают воздушный поток, который образует «воздушную подушку» между головкой и поверхностью. При остановке двигателя шпинделя коромысло автоматически (как правило, под давлением потока воздуха от еще вращающихся дисков) отводится в так называемое парковочное положение, в котором оно фиксируется специальным замком или магнитной защелкой. В этом положении головки выводятся из рабочей зоны, предотвращая возможный контакт между коромыслом и поверхностью диска, тем самым защищая уязвимую рабочую поверхность. «Парковочная» зона расположена, как правило, ближе к оси шпинделя. Но бывают и исключения, в частности, на винчестерах портативных компьютеров парковочная зона расположена на специальных парковочных стойках, расположенных за пределами пластин.
Позиционер (устройство, позиционирующее головки чтения/записи над диском) с коромыслом перемещается вдоль магнитных дисков в современных винчестерах с помощью электромагнита. В хвостовой части позиционера находится катушка, прикрытая сверху и снизу жестко закрепленными на гермоблоке магнитными пластинами, которые служат статором. При пропускании тока через обмотку катушки позиционер начинает отклоняться с определенным ускорением, а направление его отклонения можно менять изменением направления тока в обмотке позиционера. Такая схема управления носит название Voice Coil.
Внутри гермозоны расположена микросхема предусиления\коммутации (предусилитель, коммутатор). Такое, на первый взгляд странное, его расположение (внутри гермоблока, а не на печатной плате, рядом со всей остальной электроникой) объясняется очень просто: предусилитель должен располагаться как можно ближе к считывающей и записывающей головкам для сокращения тракта головка — предусилитель и уменьшения наводящихся на него помех. С предусилителей сигнал идет по ленточному шлейфу на печатную плату, где и преобразуется в тот вид, в котором он представляется IDE контроллеру системной платы компьютера.
Расположение коммутатора HDD
В реальной работе винчестеру приходится читать данные с поверхности. Для этого он должен знать, где в настоящий момент находятся головки и куда ему необходимо их переместить. С этой целью на поверхности дисков записана сервоинформация, уникальная для каждой дорожки и каждого сектора с данными
Объем, скорость и время доступа
Основными задачами производителей всегда было увеличение объема хранящейся на дисках информации и скорости работы с этой информацией. Как увеличить объем диска? Наиболее очевидным решением является увеличение количества пластин в корпусе жесткого диска. Подобным образом обычно различаются модели в пределах одного модельного ряда. Этот способ является наиболее простым и позволяет на одной и той же элементной базе получать диски различной емкости. Но у этого способа существуют естественные ограничения: количество дисков не может быть бесконечным. Увеличивается нагрузка на мотор, ухудшаются температурные и шумовые характеристики диска, вероятность брака растет пропорционально количеству пластин, а значит, труднее обеспечить надежность. Среди промышленно производимых дисков наибольшим количеством пластин обладает SCSI диск Seagate Barracuda 180 — у этого винчестера аж 12 пластин! Есть и рекордсмены в области упрощения устройства дисков. Это, например, рассматриваемый нами далее Maxtor 513DX и 541DX, у которого один диск, используемый только с одной стороны.
Технологически более сложный (и более перспективный) метод увеличения объема — увеличение плотности записи информации. Тут возникает целый ряд технологических проблем. Современные пластины изготовляются из алюминия или даже из стекла (некоторые модели IBM). Магнитное покрытие имеет сложную многослойную структуру и покрыто сверху специальным защитным слоем. Размеры частиц магнитного покрытия уменьшаются, а чувствительность их возрастает. Помимо улучшения параметров самих пластин, существенным усовершенствованиям должна подвергнуться система считывания информации. Необходимо уменьшить зазор между головкой и поверхностью пластины, повысить чувствительность головки. Но и тут законы физики накладывают свои естественные ограничения на предел применения подобных технологий. Ведь размеры магнитных частиц не могут уменьшаться бесконечно.
Самый простой способ увеличить скорость считывания — увеличить скорость вращения пластин. По этому пути и пошли конструкторы. Если пластины вращаются с большей скоростью, то за единицу времени под считывающей головкой проходит больше информации. На увеличение скорости считывания влияет также и рассмотренное выше увеличение плотности записи информации. Именно по этой причине SCSI диски, как правило, обладают большей скоростью вращения. Однако на такой скорости сложнее точно позиционировать головку считывания, поэтому плотность записи там меньше, чем на некоторых IDE дисках, а стоят такие диски больше.
Так как головка при поиске информации перемещается только поперек диска, она вынуждена “ждать”, пока диск повернется, и сектор с запрашиваемыми данными окажется доступным для чтения. Это время зависит только от скорости вращения диска и называется временем ожидания информации (latency). Но необходимо понимать, что общее время доступа к информации определяется временем поиска нужной дорожки на диске и временем позиционирования внутри этой дорожки. Увеличение скорости вращения диска уменьшает лишь последнее значение. Для уменьшения времени поиска нужной дорожки совершенствуют привод считывающей головки и уменьшают диаметр пластин диска. Почти все современные винчестеры выпускаются с пластинами диаметром 2,5 дюйма.
Позиционирование головки вообще является отдельной, весьма нетривиальной проблемой. Достаточно сказать, что при современной плотности записи приходится учитывать даже тепловое расширение! Таким образом, увеличение скорости вращения диска существенно затрудняет точное позиционирование головки. И в попытках увеличить быстродействие диска иногда приходится жертвовать объемом, используя пластины с меньшей плотностью записи. Неудивительно, что наиболее дорогие и быстрые винчестеры, отличающиеся более высокой скоростью вращения, не используют максимальной технологически доступной на данный момент плотности записи. За скорость приходится платить.
Так какому диску отдать предпочтение? При одинаковом объеме большего внимания заслуживают модели с большей плотностью записи, по сравнению с моделями с большим количеством дисков, хотя бы потому, что у них выше линейная скорость чтения/записи (большие файлы читаются быстрее). Скорость доступа к информации напрямую зависит от скорости вращения пластин (быстрее работа с большим количеством мелких файлов). Но увеличение скорости приводит к удорожанию изделий, а иногда приходится жертвовать и плотностью записи.
Устройство жесткого диска компьютера
Жесткий диск состоит из пяти основных частей. И первая из них — интегральная схема, которая синхронизирует работу диска с компьютером и управляет всеми процессами.
Вторая часть — электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.
А теперь третья, наверное самая важная часть — коромысло, которое может как записывать, так и считывать информацию. Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками. Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!
Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением — становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:
Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду. Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.
Четвертая часть — сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.
Ну и пятая, завершающая часть конструкции жесткого диска — это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют «гермозоной». Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там — вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету — а есть очищенный, осушенный воздух или нейтральный газ — азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух — его просто откачивали.
Это мы говорили про компоненты, т.е. из чего состоит жесткий диск. Теперь давайте поговорим про хранение данных.
Вместительность хранилища
Емкость жесткого диска является огромным фактором, определяющим, будет ли кто-то покупать конкретное устройство, такое как ноутбук или телефон. Если емкость хранилища достаточно мала, это означает, что она будет заполняться файлами быстрее, тогда как накопитель с большим и большим объемом памяти может обрабатывать гораздо больше данных.
Выбор жесткого диска в зависимости от того, сколько памяти он может сохранить, зависит от мнения и обстоятельств. Например, если вам нужен планшет, на котором можно хранить много видео, вы обязательно должны получить 64 ГБ, а не 8 ГБ.
То же самое верно для жестких дисков компьютера. Вы один, чтобы хранить много HD видео или изображений, или большинство ваших файлов резервируются онлайн ? При использовании автономного домашнего хранилища вы можете купить внутренний или внешний жесткий диск, поддерживающий 4 ТБ по сравнению с 500 ГБ. Смотрите терабайты, гигабайты и петабайты: насколько они велики? если вы не уверены, как эти единицы измерения сравниваются.